Sturm-Liouville solutions of the wave equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 266021
(http://iopscience.iop.org/0305-4470/26/21/038)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:01

Please note that terms and conditions apply.

Sturm-Liouville solutions of the wave equation

Pierre Hillion
Institut Henri Poincaré, 75231 Paris, France

Received 6 May 1993

Abstract

The Sturm-Liouville solutions of the 3D-wave equation when the refractive index depends only on the radial variable r are deduced from solutions of the id-wave equation that the Laplace and Fourier transforms change into a Sturn-Liouville equation.

1. Introduction

We discuss here a particular class of solutions of the wave equation obtained in the following way from the solutions of a Sturm-Liouville equation.

Let us consider the wave equation

$$
\begin{equation*}
\partial_{x}^{2} \psi+\partial_{y}^{2} \psi+\partial_{z}^{2} \psi-n^{2}(x, y, z) \partial_{x_{0}}^{2} \psi=0 \quad x_{0}=c t \tag{1}
\end{equation*}
$$

where the refractive index n is some function of x, y, z. Then, generalizing Bateman's result for n constant [1] we obtain the Sturm-Liouville solutions of (1) when n depends on the radial variable $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$.

Let $F\left(z, x_{0}\right)$ be a solution of the $1 D$-wave equation

$$
\begin{equation*}
\partial_{z}^{2} F-n^{2}(z) \partial_{x_{0}}^{2} F=0 \tag{2}
\end{equation*}
$$

Then, one checks easily that

$$
\begin{equation*}
\varphi\left(x, z, x_{0}\right)=(x \pm \mathbf{i} z)^{-1 / 2} F\left(\sqrt{x^{2}+z^{2}}, x_{0}\right) \tag{3}
\end{equation*}
$$

is a solution of the 2 D -wave equation

$$
\begin{equation*}
\partial_{x}^{2} \varphi+\partial_{z}^{2} \varphi-n^{2}(x, z) \partial_{x_{0}}^{2} \varphi=0 \tag{4a}
\end{equation*}
$$

in which the refractive index has the form

$$
\begin{equation*}
n(x, z)=n\left(x^{2}+z^{2}\right)^{1 / 2} \tag{4b}
\end{equation*}
$$

In a similar way if $\varphi\left(x, z, x_{0}\right)$ is a solution of (4a) for $n(x, z)$ arbitrary, then

$$
\begin{equation*}
\psi\left(x, y, z, x_{0}\right)=(x \pm i y)^{-1 / 2} \varphi\left(\left(x^{2}+y^{2}\right)^{1 / 2}, z, x_{0}\right) \tag{5a}
\end{equation*}
$$

is a solution of (1) for the refractive index

$$
\begin{equation*}
n(x, y, z)=n\left(\left(x^{2}+y^{2}\right)^{1 / 2}, z\right) . \tag{5b}
\end{equation*}
$$

Then, combining (3) and (5) we obtain the following solutions of the wave equation (1)

$$
\begin{equation*}
\psi\left(x, y, z, x_{0}\right)=A(x, y, z) F\left(r, x_{0}\right) \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
A(x, y, z)=(x \pm \mathrm{i} y)^{-1 / 2}(\rho \pm \mathrm{i} z)^{-1 / 2} \tag{7a}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\left(x^{2}+y^{2}\right)^{1 / 2} \quad r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \tag{7b}
\end{equation*}
$$

provided that the refractive index is

$$
\begin{equation*}
n(x, y, z)=n(r) \tag{8}
\end{equation*}
$$

We call (6) the Sturm-Liouville solutions of the wave equation since the function F is solution of (2) that the Laplace and Fourier transforms change into a Sturm-Liouville equation.

A feature worth noticing in these solutions is the unusual attenuation factor (7a) $A(x, y, z)$. For instance, for n constant the solutions (6) are spherical waves, different from the usual ones, with the attenuation factor r^{-1} and reminiscent of the so-called electromagnetic missiles [2].

The Sturm-Liouville solutions in a cylindrical medium are given by the expression (3) with the attenuation factor $(x \pm i z)^{-1 / 2}$.

We now discuss the solutions of (2).

2. Time-arbitrary dependent solutions

To solve (2) we first use the Laplace transform [3]

$$
\begin{equation*}
F(z, s)=\int_{0}^{\infty} \mathrm{e}^{-s t} F(z, t) \mathrm{d} t \tag{9}
\end{equation*}
$$

with, to simplify, the same notation for the original function and its image.
Assuming $F(z, 0)=\left(\partial_{t} F(z, t)\right)_{t=0}=0$ the Laplace transform (9) changes the wave equation (2) into the Sturm-Liouville equation

$$
\begin{equation*}
\partial_{z}^{2} F(z, s)-s^{2} n^{2}(z) F(z, s)=0 \tag{10}
\end{equation*}
$$

with the general solution [4]

$$
\begin{equation*}
F(z, s)=\gamma^{-1 / 4}(z, s) \exp \left\{\int \gamma^{1 / 2}(z, s) \mathrm{d} z\right\} \tag{11a}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(z, s)=-s^{2} n^{2}(z)+c^{\prime \prime}(z, s) c^{-1}(z, s) \tag{11b}
\end{equation*}
$$

while the function $c(z, s)$ satisfies the differential equation

$$
\begin{equation*}
c^{\prime \prime} c^{-1}-s^{2} n^{2}=c^{-4} \tag{12}
\end{equation*}
$$

Neglecting $c^{\prime \prime} c^{-1}$ in (11b) gives the WKJB approximation. But for some expressions of $n(z)$ met in optics one may solve the Sturm-Liouville equation (9) exactly. Let us give two examples. For $n(z)=\mathrm{e}^{-\alpha z}$ the solution of (10) is

$$
\begin{equation*}
F(z, s)=I_{0}\left(\frac{s}{a} \mathrm{e}^{-a z}\right) \tag{13}
\end{equation*}
$$

where I_{0} is the modified Bessel function of the first kind of order zero and the inverse Laplace transform of. (13) is [5]
$F\left(z, x_{0}\right)=\frac{1}{\pi}\left(\frac{2}{a} \mathrm{e}^{-a z}\left(x_{0}-\frac{\mathrm{e}^{-a z}}{a}\right)-\left(x_{0}-\frac{\mathrm{e}^{-a z}}{a}\right)^{2}\right)^{-1 / 2} H\left(\frac{2 \mathrm{e}^{-a z}}{a}-x_{0}\right) H\left(x_{0}-\frac{\mathrm{e}^{-a z}}{a}\right)$
where H is the Heaviside function.
Consequently, according to (6), when $n(r)=\mathrm{e}^{-a r}$ equation (1) has the Sturm-Liouville solutions

$$
\begin{align*}
\psi\left(x, y, z, x_{0}\right)= & \frac{A(x, y, z)}{\pi}\left(\frac{2}{a} \mathrm{e}^{-a r}\left(x_{0}-\frac{\mathrm{e}^{-a r}}{a}\right)-\left(x_{0}-\frac{\mathrm{e}^{-a r}}{a}\right)^{2}\right)^{-1 / 2} \\
& \times H\left(\frac{2 \mathrm{e}^{-a r}}{a}-x_{0}\right) H\left(x_{0}-\frac{\mathrm{e}^{-a r}}{a}\right) \tag{15}
\end{align*}
$$

As a second example we assume $n(z)=(1+a z)^{-2}$. Then, the solution of (10) is

$$
\begin{equation*}
F(z, s)=(1+a z) \exp \left(\frac{-\bar{s}}{a(1+a z)}\right)^{-} \tag{16}
\end{equation*}
$$

with the inverse Laplace transform

$$
\begin{equation*}
F(z, t)=(1+a z) \delta\left(x_{0}-\frac{1}{a(1+a z)}\right) \tag{17}
\end{equation*}
$$

where δ is the Dirac distribution. So, according to (6) when $n(r)=(1+a r)^{-2}$ equation (1) has the Sturm-Liouville solution

$$
\begin{equation*}
\psi\left(x, y, z, x_{0}\right)=A(x, y, z)(1+a r) \delta\left(x_{0}-\frac{1}{a(1+a r)}\right) \tag{18}
\end{equation*}
$$

This Dirac pulse has some unusual properties being reminiscent of the so-called 'Big Crunch' of a contracting universe at $r=0$ and $x_{0}=a^{-1}$.

In these two simple examples the inverse Laplace transform had an analytical expression, but generally one has to compute numerically the inverse Laplace transform [6].

3. Time-harmonic solutions

For time-harmonic solutions of (2)

$$
\begin{equation*}
F\left(z, x_{0}\right)=\mathrm{e}^{\mathrm{i} k x_{0}} G(z) \tag{19}
\end{equation*}
$$

Table 1. Time-harmonic solutions $F\left(z, x_{0}\right)=\mathrm{e}^{k x_{0}} G(z)$.

$n(z)$	$G(z)$
1. $(a+b z)^{-1}$:	$k^{-m}(a+b z)^{m} \quad 2 m-1=\left(1-4 k^{2} / b^{2}\right)^{1 / 2}$
2. $\left(a+b z+c z^{2}\right)^{-1}$:	$m^{-1 / 2}\left(a+b z+c z^{2}\right)^{1 / 2} \exp \left(\operatorname{im} \int \frac{\mathrm{~d} z}{a+b z+c z^{2}}\right) \quad b^{2}-4 a c=4\left(k^{2}-m^{2}\right)$
3. $\left(a^{2}+z^{2}\right)^{-1}$:	$m^{-1 / 2}\left(a^{2}+z^{2}\right)^{1 / 2} \exp \left(\mathrm{im} \tan ^{-1} z / a\right) \quad m^{2}=a^{2} \times k^{2}$
4. $\mathrm{e}^{-a s}$:	$J_{0}\left(\frac{k}{a} \mathrm{e}^{-a z}\right)$
5. $\left(C_{0}+C_{1} \mathrm{e}^{-2 a z}\right)^{1 / 2}$:	$J_{p}\left(\frac{k}{a} C_{1}^{1 / 2} \mathrm{e}^{-a s}\right) \quad p=\mathrm{i} \frac{k}{a} C_{0}^{1 / 2}$
6. $\left(1-a^{2} z^{2}\right)^{1 / 2}$:	$e^{1 / 2 c a z^{2} I_{z}^{-2 m}} \mathrm{e}^{-k a z^{2}} \quad 4 m=1-k / a$
7. $\left(1-k^{2} z^{2}\right)^{1 / 2}$;	$e^{-k^{2} z^{2} / 2}$
8. $\left(1+\cos ^{2} a z\right)^{1 / 2}$:	$C e_{m}(a z, q) \quad S e_{m}(a z, q) \quad z^{2} q=m^{2}=2 k^{2} / a^{2} \quad m$ integer
9. $\left(1+(1+a z)^{2}\right)^{-t}$:	$\left(1+(1+a z)^{2}\right)^{1 / 2} \exp \left(\frac{\mathrm{im}}{a} \tan ^{-1}(1+a z)\right) \quad m=\left(a^{2}+k^{2}\right)^{1 / 2}$
10. $(1+a z)^{-2}$:	$(1+a z) \exp (i k / a(1+a z))$
11. $1+a z:$	$(1+a z)^{1 / 2} J_{-1 / 4}\left(\frac{k}{a}(1+a z)^{2}\right)$
12. $(1+a z)^{-p}$:	$(1+a z)^{1 / 2} J_{1 / 2(p-1)}\left(\frac{k}{a}\left(\frac{1+a z}{1-p}\right)^{1-p}\right)$
$\text { 13. } \begin{gathered} \left(l-k^{2} z^{2}\right)^{-1}: \\ k z<1 \end{gathered}$	$\begin{gathered} m^{-1 / 2}\left(\frac{a+b s+c s^{2}}{c h k s}\right)^{1 / 2} \exp \left(i \tan ^{-1}\left(\frac{2 a s+b}{2 m}\right)\right) \\ m z=\tanh k s \end{gathered}$

In lines $4,5,11,12, J_{n}$ is the Bessel function of the first kind of order n. For the refractive index (8), equation (8) becomes the Mathieu equation with periodic solutions for m integer

$$
\partial_{z}^{2} F+\left(m^{2}+16 q \cos 2 z\right) F=0
$$

Here we have used Whittaker's notation [8].
one has just to change s into $-\mathrm{i} k$ in the Sturm-Liouville equation (10) which becomes

$$
\begin{equation*}
\partial_{z}^{2} G(z)+k^{2} n^{2}(z) G(z)=0 \tag{20}
\end{equation*}
$$

As previously stated this last equation may be solved exactly for some particular expressions of $n(z)$. We give in table 1 a list (non-exhaustive) of such solutions, many of which may be found in [4] and [7].

Then, using (6) and the results of table 1 we obtain, for instance, the time-harmonic Sturm-Liouville solutions for $n(r)=\mathrm{e}^{-a r}$

$$
\begin{equation*}
\psi\left(x, y, z, x_{0}\right)=A(x, y, z) J_{0}\left(\frac{k}{a} \mathrm{e}^{-a r}\right) \mathrm{e}^{i k x_{0}} \tag{21}
\end{equation*}
$$

where J_{0} is the Bessel function of the first kind of order zero. For $n(r)=(1+a r)^{-2}$ we have

$$
\begin{equation*}
\psi\left(x, y, z, x_{0}\right)=A(x, y, z)(1+a r) \frac{\mathrm{i} k}{\mathrm{e}^{\alpha(1+a r)}} \mathrm{e}^{\mathrm{i} k x_{0}} \tag{22}
\end{equation*}
$$

Let us now consider a periodic medium with the refractive index

$$
n(r)=\left(1+\cos ^{2} a r\right)^{1 / 2}
$$

Then (20) becomes a Mathieu equation with the solutions [8]

$$
C e_{m}(a z, q) \quad z^{2} q=m^{2}=2 k^{2} / a^{2}, m \text { integer }
$$

leading to the Sturm-Liouville solutions of (1)

$$
\begin{equation*}
\psi\left(x, y, z, x_{0}\right)=A(x, y, z) C e_{m}(a r, q) \mathrm{e}^{\mathrm{i} k x_{0}} \tag{23}
\end{equation*}
$$

Some approximate Sturm-Liouville solutions of the wave equation with $n=n(r)$ may be obtained by applying the WKBJ approximation to (10) and (20).

4. Discussion

Since $n(x, y, z)=n(r)$ the Sturm-Liouville waves propagate in a medium with spherical symmetry. But although the wavefronts are spherical the amplitude is not constant on a wavefront, since the attenuation factor $A(x, y, z)$ has no spherical symmetry. Moreover as already noticed $|A(x, y, z)|<r^{-1}$ so that the attenuation of the SturmLiouville waves is smaller with distance than the attenuation of classical spherical waves. So the Sturm-Liouville waves make it possible to understand how diverging spherical waves can propagate in a non-uniform way. This result could be useful for instance to explain the 'Big Bang' theory of inhomogeneities in the universe.

Remark. For time-harmonic fields and radial $n(r)$ one may obtain solutions of the 3Dwave equation (1) in terms of generalized Bremmer series [9] provided, of course, that the series converge. The solutions discussed here are different since they are generated by applying the Bateman theorem twice to solutions of the $1 \mathrm{D}-\mathrm{Helmholtz}$ equation (20) in which $n(z)$ has the same expression as $n(r)$.

4. Acknowledgment

The author is indebted to a referee for drawing attention to reference [9].

4. References

[1] Bateman H 1959 Partial Differential Equations of Mathematical Physics (Cambridge: Cambridge University Press)
[2] Wu T T 1985 Electromagnetic missiles J. Appl. Phys. 572370
[3] Doetsch G 1971 Guide to the Applications of the Laplace Transform (London: Van Nostrand)
[4] Lanczos C 1961 Linear Differential Operators (London: Van Nostrand)
[5] Erdelyi A 1954 Tables of Integral Transforms vol 1 (New York: McGraw-Hill)
[6] Bellman R E, Kalaba R E and Lockett J 1964 Numerical Inversion of the Laplace Transform (New York: Elsevier)
[7] Jeffreys H and Jeffreys B 1966 Methods of Mathematical Physics (Cambridge: Cambridge University Press)
[8] Whittaker E T and Watson GN 1952 A Course of Modern Analysis (Cambridge: Cambridge University Press)
[9] Vissers FP L M, Kamp L P J and Sluijter F W 1991 Some generalizations of radial Bremmer series Wave Motion 1343

