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Sturm-Liouville solutions of the wave equation 

Pierre Hillion 
Institut Henri P o i n d ,  75231 Paris, France 

Received 6 May 1993 

Absbact. The Sturm-Liouville solutions of the 3~-wave equation when the refractive index 
depends only on the radial variable rare deduced from solutions of the ID-wave equation 
that the Laplace aod Fourier transforms change into a Sturm-Liouville equation. 

1. Introduction 

We discuss here a particular class of solutions of the wave equation obtained in the 
following way from the solutions of a Sturm-Liouville equation. 

Let us consider the wave equation 

a ; ~  + a;V + a:yl-n2(x,  y. z)a:,yl = o xg=ct (1) 

where the refractive index n is some function of x, y ,  z. Then, generalizing Bateman’s 
result for n constant [l] we obtain the Sturm-Liouville solutions of (1) when n depends 
on the radial variable r = ( g + j ? + t ) ’ / ’ .  

Let F(z, xg) be a solution of the ID-wave equation 

a;F-rZ(z)a2d=o.  (2)  

q(x, z, ~ ~ ) = ( x I i z ) - ” ~ F ( m ,  xo) (3) 

a :q + a 3 7 -  n2(x, z)a:oq= o ( 4 4  

n(x,  z)=n(XZ+z2)”2. (4b) 

w, Y. 2, Xo)=(x*iy)-’ /*9)((XZ+1?)’~,  2, XCJ ( 5 4  

n(x, y ,  z )=n((2+yZ)’ /2 ,  2). (5b) 

Then, combining (3) and (5) we obtain the following solutions of the wave equation 
(1) 

(6) 

Then, one checks easily that 

is a solution of the zD-wave equation 

in which the refractive index has the form 

In a similar way if q(x, z, XO) is a solution of (4a) for n(x, z) arbitrary, then 

is a solution of (1) for the refractive index 

w(x, Y ,  Z , X O )  = 4 x ,  y. z)F(r, XO) 
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with 

where 
~ ( x ,  y ,  I) =(x*iy)-li2(p*iz)-'/' ( 7 4  

p = (2 +)?)I/' (7b) 

nfx, Y ,  z )=n( r ) .  (8) 

r = (2 +J + 2)'" 
provided that the refractive index is 

We call (6) the Sturm-Liouville solutions of the wave equation since the function F is 
solution of (2) that the Laplace and Fourier transforms change into a Sturm-Liouville 
equation. 

A feature worth noticing in these solutions is the unusual attenuation factor ( 7 4  
A ( x ,  y ,  I). For instance, for n constant the solutions (6) are spherical waves, different 
from the usual ones, with the attenuation factor r-I and reminiscent of the so-called 
electromagnetic missiles [2]. 

The Sturm-Liouville solutions in a cylindrical medium are given by the expression 
(3) with the attenuation factor (X+~Z)-''~. 

We now discuss the solutions of (2). 

2. Timearbitrary dependent solutions 

To solve (2) we ftrst use the Laplace transform [3] 

F(z, s) = JOm e-"F(z, 1) dt 

with, to simplify, the same notation for the original function and its image. 

equation (2) into the Sturm-Liouville equation 
Assuming F(z, O)=(a,F(z, t ) ) ,=o=O the Laplace transform (9) changes the wave 

a:F(I, s)-s2n*(z)F(z, s)=O (10) 
with the general solution [4] 

where 

y(z, s) = -hZ(z) +c"(z, S)C8(2,  s) 

c'c-' -&'=c-4. 

(IW 

(12) 

Neglecting c"c-' in ( I lb )  gives the WKJB approximation. But for some expressions of 
n(z) met in optics one may solve the Sturm-Liouville equation (9) exactly. Let us give 
two examples. For n(z) =e-'' the solution of ( IO)  is 

while the function c(z, s) satisfies the differential equation 
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where IO is the modified Bessel function of the first kind of order zero and the inverse 
Laplace transform of.(13) is [51 

where His the Heaviside function. 

ville solutions 
Consequently, according to (6) ,  when n(r) =e-m equation ( 1 )  has the Sturm-Liou- 

As a second example we assume n(z) = (1 +az)-'. Then, the solution of (10) is 

F(z, s )  = ( 1 + az) exp L ( l L J  

with the inverse Laplace transform 

F(z, t ) = ( l + a z ) 6  

where 6 is the Dirac distribution. So, according to (6) when n(r)  = (1 +ar)-' equation 
( 1 )  has the Sturm-Liouville solution 

This Dirac pulse has some unusual properties being reminiscent of the so-called 'Big 
Crunch' of a contracting universe at r=O and xo=a-'. 

In these two simple examples the inverse Laplace transform had an analytical 
expression, but generally one has to compute numerically the inverse Laplace 
transform [6]. 

3. Tie-harmonic solutions 

For time-harmonic solutions of (2) 

F(z, X O )  = e'*G(z) 
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Table 1. Time-harmonic solutions f l z ,  x ~ )  =e'*"G(z) 

N4 W )  

1. (a+bz)-': k-"(n+b;)" Zm-I=(l-4ka!b')''' 

k z c l  mr=tanhks 

In l ins 4.5. 1 I ,  12, J. is the Bessel function of the first kind of order n. For the refractive index (8 ) ,  equation 
(8) becomes the Mathieu equation with periodic solutions for m integer 

afF+(mZ+l6qcos z : ) F = ~  
Here we have used Whittaker's notation [XI.  

one has just to changes into -ik in the Sturm-Liouville equation (10) which becomes 

atG(z)+kZn2(z)G(z)=0. (20) 

As previously stated th is  last equation may be solved exactly for some particular expres- 
sions of n(z). We give in table 1 a list (non-exhaustive) of such solutions, many of 
which may be found in 141 and [7]. 

Then, using (6) and the results of table 1 we obtain, for instance, the timeharmonic 
Sturm-Liouville solutions for n(r) =e-'' 

(21) 
k -a, v(x, Y. z ,  XO) = 4 x ,  Y ,  ~ ) J o  - e 
(a 

where Jo is the Bessel function of the 6rst kind of order zero. For n(r)  =(1 +ar)-' we 
have 

(22) 
ik 

v(x, Y ,  2, xo)=A(x, Y. z)(l +U,.) Po. 
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Let us now consider a periodic medium with the refractive index 

n(r) = (1 + cos2 M) ’ ’~ .  

Then (20) becomes a Mathieu equation with the solutions [8] 

Some approximate Stum-Liouville solutions of the wave equation with n=n(r)  may 
be obtained by applying the WKBJ approximation to (10) and (20). 

4. Discussion 

Since n(x, y, z) = n(r) the Sturm-Liouville waves propagate in a medium with spher- 
ical symmetry. But although the wavefronts are spherical the amplitude is not constant 
on a wavefront, since the attenuation factor A ( x ,  y, z) has no spherical symmetry. 
Moreover as already noticed IA(x,y,z)I <r-’ so that the attenuation of the Sturm- 
Liouville waves is smaller with distance than the attenuation of classical spherical waves. 
So the Sturm-Liouville waves make it possible to understand how diverging spherical 
waves can propagate in a non-uniform way. This result could be useful for instance to 
explain the ‘Big Bang’ theory of inhomogeneities in the universe. 

Remark. For time-hannonic fields and radial n(r)  one may obtain solutions of the 3o- 
wave equation (1) in terms of generalized Bremmer series [9] provided of course, that 
the series converge. The solutions discussed here are different since they are generated 
by applying the Bateman theorem twice to solutions of the lo-Helmholtz equation (20) 
in which n(z) has the same expression as n(r). 
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